SIPRAC Briefing on Modeling for O3, PM2.5 and RHz SIPs

Dave Wackter, CTDEP, June 8, 2006

Overview

- SIP Schedules
- Air Quality
- Air Pollutant Emissions
- Base and Future Year Modeling
- Attainment Strategy

Recent EPA Actions

- CAIR (12May05)
- CAIR SIP/FIP (28Apr06)
- 8-hr O3 Phase 2 Rule (29Nov05)
- PM2.5 implementation proposal (01Nov05)
- PM2.5 and PM10-2.5 NAAQS proposal (signed 20Dec05)
- Regional Haze BART rule (06Jul05)

Timeframes for SIP Revisions

<u>Due Date</u> <u>SIP Revision</u>

Jan 06 2002 emission inventory

Sept 06 RACT

Sept 06/Mar07 CAIR SIP full/abbreviated

June 07 8-hr O3 attainment plan

Dec 07 Regional Haze and BART

Apr 08 PM2.5 attainment plan

Simplified Photochemistry of O3 Formation

Where Does Our Air Pollution Come From?

Four Distinct Parts

- Local emissions in Nonattainment Areas (NAAs)
- Three types of transport
 - 1 Short range
 - "Ground level" transport
 - VA to MD to PA to NJ to NY to CT to MA.
 - 2 Long range (synoptic scale)
 - "Aloft" transport
 - 100s of miles
 - Generally from W or NW
 - 3 Low Level Night-Time Jets
 - "Aloft" transport at night
 - 100s of miles
 - SW to NE along the Atlantic

Regional Collaborations

- CT, NY, NJ (O3 and PM2.5 SIPs)
- NESCAUM
- MARAMA
- OTC
- MANE-VU

- EPA Regions 1 and 2
- EPA RTP
- RPO's in MW and SE
- STAPPA
- Other states

Air Quality in the Northeast Baseline and Trends

Connecticut 1-Hour Ozone Exceedance Day Trend and Implemented Control Strategies 1975 - 2005

CT 8-hour Ozone Design Values for 2005 (avg of 4th high 2003-2005)

Peak 2005 8-Hour Ozone Design Values for the NYC and Greater CT Nonattainment Areas

Emissions

- Base Year Inventory 2002
 - For O3, PM2.5 and RHz SIPs
- Modeling Inventories Projected to Future Years
 - 2009 for O3 and PM2.5
 - -2012 for O3
 - 2018 for RHz

Changes in Modeling Emissions Inventory from 2002 to 2009 and 2018

Annual Total NOx Emissions MANE-VU Region By Category

Annual Total VOC Emissions MANE-VU Region By Category

Modeling for Base and Future Years

- CMAQ for O3, PM and RHz SIPs
- CALGRID for O3 strategy development
- REMSAD for RHz
- CALPUFF for BART assessments
- Trajectory Models and Receptor Models for RHz Weight of Evidence Demonstrations

TRANSPORT

CT's air quality is frequently overwhelmed by transport from upwind sources

This map overlays NOx sources and wind flow on the 20th percentile high ozone days

Peak Day Concepts

- High O3 occurs on hot, sunny days
- NOx emissions: power plants and fuel combustion (air conditioning demand)
- VOC emissions from evaporation and motor vehicles (fuels, solvents and vegetation)
- Atmospheric transport from W and S
 (in NY,NJ,CT, hot days = SW winds from urban corridor + Ohio Valley power plants)

Daily NOx Emission from EGUs in New England (June 1, 2002 - September 15, 2002)

Note: Baseload and peaking units are shown. Although peakers only operate a limited number of hours per year, they contribute signficantly to NOx emissions on hot days.

"Current Design Values (DVC)" Determined from Observations

Map of Average 2000-2002, 2001-2003, and 2002-2004 Design Values

Average of 8-hr O₃
Design Values for 2000-2002, 20012003, and 20022004 at OTC monitors ("Current Design Values" for the purpose of the modeled attainment test)

Relative Reduction Factors (RRF) Calculated From CMAQ Simulations with 2002 and 2009 Base Case Emissions For May 15 – September 29

- Relative Reduction Factors
 (RRF) were calculated from the corrected 2002 and 2009 base case scenarios
- The 2009 base case includes CAIR and other "OTB/OTW" measures
- RRF calculation was performed for each grid cell, considering values in surrounding grid cells (3*3 array) and only days that fulfill the threshold criteria as specified in the guidance on pages 15-17, 21-24, and 60-64
- For uncolored regions, fewer than 5 days ≥ 70 ppb were predicted in the 2002 base case, therefore no RRF could be calculated per guidance

2002 current design value

2009 predicted design value

Color key for ozone concentration scale (ppb)

CMAQ Modeling Caveats

• The emission inventories for MANE-VU, VISTAS and MRPO (both 2002 and 2009), will be updated

Sensitivity tests of DVF to Emission Reductions Relative to the 2009 OTB/OTW Base Case

Category	Case 5	Case7
	(not too "reasonable")	("reasonable")
Area Sources	30% VOC/CO/NOx reductions within the inner OTR corridor	10% VOC/CO reductions across the entire MANE-VU region
Nonroad Sources	30% VOC/CO/NOx reductions within the inner OTR corridor	No reductions
Mobile Sources	No reductions	No reductions
Non-EGU Point Sources	30% VOC/CO/NOx reductions within the inner OTR corridor	30% NO _x reductions across the entire MANE-VU region
EGU Point Sources	30% VOC/CO/NOx reductions domain-wide	30% VOC/CO/NOx reductions domain-wide

DVF 2009 Case5

DVF 2009 Case7

Findings for 2009 Base Case CMAQ and CALGRID Modeling

• Continued 8-hr ozone nonattainment in 2009, but improvement with emission reductions

 Suggests the need for aggressive emissions reductions and possibly more time beyond 2009

One Path to Attainment

EGU NOx Reductions

- OTC/Midwest collaborative (CAIR+ summer!)
- Reduce peak day EGU NOx (inner corridor)

Mandatory Bump-up

- From moderate (2009 attain) to serious classification (2012 attain)
- CT, NY, NJ (PA, MD, DC, VA?)

Backstops

- Same states petition EPA under Section 126
- States sue EPA under Section 110(a)(2)(D)

Stationary Source Control Strategies for CT

BOTW (Beyond On the Way) Control Strategies for CT include:

- Solvent Cleaning
- Consumer Products
- AIM Coatings
- ICI Boilers (Non EGUs)
- Tighter CAIR budget (EGUs)
- Peak day EGU strategies

Draft OTC Control Strategies

The following O3 measures being discussed by the OTC may need to be addressed in CT:

- Consumer Products
- Portable fuel containers
- Industrial adhesives and sealants
- Asphalt paving

- Asphalt production plants
- ICI boilers
- Chip reflash
- Regional fuels

Predictions for PM_{2.5}

- Utilized 2002 & 2009 CMAQ simulations
- 31 STN Monitors across the OTR
- Compute reconstructed mass (RCM) from STN measurements
- Based on quarterly average measurements
 - $2002 \text{ RCM} = 1.37 \times \text{SO}_4 + 1.29 \times \text{NO}_3 + \text{EC} + \text{OM} + \text{Crustal}$
 - $\underline{2009 \text{ RCM}} = RRF_{SO4} \times [1.37 \times SO_4] + RRF_{NO3} \times [1.29 \times NO_3] + RRF_{EC} \times [EC] + RRF_{OM} \times [OM] + RRF_{Crustal} \times [Crustal]$

Where $RRF_x = CMAQ_{x,2009}/CMAQ_{x,2002}$

• Guidance and software programs still due from EPA

Regional Haze Modeling

Regional Planning Organizations Mid-Atlantic/Northeast Visibility Union Midwest Regional Western Regional Planning Organization Air Partnership Central Regional Air Planning Association Visibility Improvement State and Tribal Association of the Southeast

Seasonal Analysis of the 20% Worst 2000-2003 Visibility Days at Lye Brook, VT

Courtesy of Tom Downs, Maine DEP

VTAPCD Comment: Except for winter nitrate, on worst visibility days, SO₄ is at least 5 times and generally 10 times as responsible for light extinction as other components.

Baseline visibility and implied 2009 and 2018 uniform progress goals

2002/2009/2018 Base Results

- 20% best/worst RRFs calculated across the year
- Preliminary calculations use a combination of Base A and Base A1 when available (May-September)
- Species specific RRFs applied to baseline conditions at each IMPROVE site

Average Sulfate Reductions

2009 Relative Mass Reduction

2018 Relative Mass Reduction

Class I Site RRFs

- Site-specific modeled PM mass
- Ranked as DV using default IMPROVE extinction equation (monthly f(RH))
- 20% worst days were compared for 2002, 2009 and 2018, species by species
- These ratios are applied to "actual"
 IMPROVE monitoring data

Projected Mass Reductions

20% Worst Modeled Ammonium Sulfate Values

Relative mass reductions applied to visibility metric for New England sites

Relative mass reductions applied to visibility metric for Mid-Atlantic sites

